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SUMMARY 

A computational study of natural convection of air in a tall rectangular cavity with 4: 1 aspect ratio is conducted. 
In an effort to investigate the applicability of the Boussinesq approximation to turbulent flow simulation, the 
cavity is differentially heated from the sides and is insulated at the ends at a Rayleigh number of lo9. Starting 
from quiescent and isothermal flow conditions, the flow is driven to turbulence without any artificial 
perturbations. The computer programme developed integrates the two-dimensional, time-dependent Navier- 
Stokes equations with the Boussinesq approximation and the energy equation by a time-accurate method on a 
stretched, staggered grid. The simulation proceeds to a statistically steady solution in which large-scale structures 
are found in the mean. Both mean and fluctuating quantities provide good agreement with experimental results. 
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1. INTRODUCTION 

Buoyancy-driven flows in enclosures have been the subject of extensive numerical and experimental 
investigations owing to applications in heat transfer engineering. Some of these applications include 
nuclear insulation, radioactive waste containers and energy storage devices such as solar collectors 
and double windows and other air gaps in unventilated spaces. Comprehensive reviews’-3 summarize 
the main characteristics of buoyancy-dnven flows. Accordmgly, one area where a lack of 
understanding still exists is flow behaviour in the high-Rayleigh-number, Ra, turbulent regime which 
is the focus of the present work. 

Flow in a differentially heated cavity is established when fluid near the active vertical walls is 
convected away by buoyant forces due to a change in density. Since the cavity is enclosed at the ends, 
a circulatory flow is established. As the fluid travels along the active walls, it passes through several 
stages. In the entering comer (bottom of the hot wall and top of the cold wall; Figure 1) the flow is 
initially laminar. It soon passes through a transition region and becomes fully turbulent well before 
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u = v = o  

Figure 1. Geometry of cavity considered 

the mid-height of the cavity. Once a statistically steady flow is established, the core of the cavity can 
be roughly characterized as a stably stratified, quiescent flow. 

This configuration also provides valuable information for turbulent natural convection along an 
isolated heated vertical plate in the presence of a stably stratified fluid, as initially noted by Elder.4 
After a measuring velocity and temperature in an enclosed cavity, Elder4 concluded that the wall 
layers are similar in behaviour to those of an isolated vertical flat plate. Other investigations of high- 
Ra flow in an enclosed cavity include those of Kutateladze er u I . , ~  who measured heat transfer, 
velocity and temperature means and their fluctuations, Cowan et who obtained heat transfer data 
for various aspect ratios, and G e l  and Schmidt,' who measured velocity and temperature means, their 
fluctuations, as well as frequency spectra of temperature fluctuations. Paolucci' conducted a thorough 
numerical investigation of turbulent natural convection in a square cavity, obtaining heat transfer 
data, velocity and temperature means, their fluctuations, as well as probability distributions of 
fluctuating quantities. 

The main emphasis of the present study is to investigate the applicability of the Boussinesq 
approximations to simulations of turbulent flows. Paolucci8 suggested that the Boussinesq 
approximations lead to an inherent symmetry in the flow and cannot accurately simulate 
buoyancy-driven turbulence without perturbing the flow, making the simulation of the transient 
state starting from quiescent and isothermal conditions unfeasible. Contrary to what is stated by 
Paolucci, however, this investigation is able to obtain hl ly  turbulent flow while taking advantage of 
the Boussinesq approximation, without any artificial perturbations imposed on the flow field. 
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2. NUMERICAL MODEL 

2.1.  Governing equations and boundary conditions 

An incompressible fluid is considered inside a tall two-dimensional rectangular cavity as shown in 
Figure 1. The left and right walls of the cavity are isothermal, while the top and bottom are insulated. 
The left wall is heated to a temperature T,, and the right wall is cooled to T,. No-slip boundary 
conditions are imposed on all four sides of the cavity. The flow is initially completely quiescent and 
isothermal at a temperature To = i(Th + T,). The gravity vector is in the negative y-direction, 
perpendicular to the imposed thermal gradient. The aspect ratio A of the cavity is defined to the height 
of the cavity divided by the width, L,,/L,. 

The mathematical equations governing this fluid are the incompressible Navier-Stokes equations 
along with the thermal energy equation. In non-dimensional form these may be written as 

au a2; 
- + - - 0 ,  

ifx ay 

- + - + - = - - + + r  
a~ au2 ~ U V  ap 
at ax ay ax 

ih ~ U V  ad -+-+-= 
at ax ay (3) 

(4) 
ae aeu 8 t h  a% a% -+-+-=-+--, 
at ax ay ax2 a y ~  

where u, K, 8, p and g are the non-dimensional horizontal velocity, vertical velocity, temperature, 
pressure and gravitational acceleration respectively. These quantities are non-dimensionalized based 
on the cavity width L,, the side wall temperature difference AT = Th - T, and the thermal diffusion 
time scale rc/L;. The non-dimensional temperature 0 is defined as ( T  - T,) /AT.  The governing 
equations include the incompressible Boussinesq approximations, which imply that the fluid 
properties fi and v are constants and that the buoyancy term appears only in the momentum equation 
as a linear function of the temperature. 

The independent non-dimensional numbers that describe buoyant flow in a cavity are the Rayleigh 
number Ra, which reflects the buoyant contribution, the Prandtl number Pr, which is the ratio of 
viscous to thermal diffusion, and the aspect ratio A .  These quantities are defined as 

The thermophysical properties used abovc are the kinematic viscosity v ,  the thermal diffusivity K 
and the coefficient of thermal expansion p. In the present work these parameters are set to 
Ra = lo', Pr = 0.71 and A = 4, with air as the working fluid. 

2.2. Solution procedure and code validation 

The governing equations (1 H4) are solved numerically by a computer code developed by Peltier.' 
The semi-implicit solution procedure employs the AdarnsBashforth explicit method on the 
convective terms and the implicit Crank- Nicolson method on the viscous terms. Central finite 
differences are used on a stretched, staggered grid with weighted differences accounting for the 
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stretching. The momentum equations are discretized by a time-stepping method with second-order 
accuracy in both time and space. With temporal discretization the momentum equations can be 
rewritten in index notation as 

(6) 

The time-splitting techniquelo*" is now applied to (6). In the first step of this two-step time 
advancement method the pressure term is omitted and the equations are discretized at a Fractional step 
(denoted by a 'hat'): 

,,n+ I 3 %u,u,)" I LXU u ) " - I  a p n + l / 2  
I - u : -  - + -2'- - -- 

At 2 ax, 2 ax, 

(7) At 

Subtracting (7) from (6). one obtains 

where 4 is a pressure-like scalar quantity to be determined. Taking the divergence of (9) and 
imposing (equation ( I ) )  at time level n + 1, a Poisson equation for 4 is obtained: 

Once 4;" is obtained from (lo), u;" can be easily calculated from (9) to advance the solution in 
time. This solution procedure satisfies continuity to machine zero. The Helmholz equations for the 
momentum and energy and the pressure Poisson equation are solved using the tensor product 
(eigenvalue decomposition) technique. Further details of this solution procedure can be found 
elsewhere.9-'2 

The accuracy of the numerical calculation has been established by Peltier and BiringenI3 by 
comparing solutions with previously published results. Tables I and I1 compare solutions of the 
thermally dnven cavity with the benchmark calculations of de Vahl Davis,I4 Biringen and 
Danabasoglu" and Le Quere and Penot.' Excellent agreement is found in these comparisons, thus 
verifying the accuracy of the solution technique. Further validation of this solution procedure may be 
found in Reference 9. 

2.3. Resolution requirements 

The main difficulties associated with the direct simulation of turbulent flows are the necessity to 
resolve a wide range of length scales existing in the flow and the inherent three-dimensionality of 
turbulence.'"." The range of length scales grows rapidly with the Reynolds number Re, making many 

Table I .  Comparison of maximum streamfunction in a thermally driven 
cavity ( A  = 1. Pr = 0.71. Ra = lo5) 

Current work de Vahl DavisI4 Biringen and Danabasoglu" 

9.58 9.612 9.78 
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Table 11. Comparison of critical Rayleigh number Rn, and 
period of oscillation, n, times square root of Rn in a thermally 

driven cavity ( A  = 4, Pr = 0.71) 

Le Quere and Penot" 

1.5 x 106-1.7 x lo6 

Current work 

1.7 x 1061.8 x lo6 Roc 
IlRa''' 4.97 4.93 

interesting fluid dynamics problems unfeasible for direct numerical simulations. To simulate the flow 
accurately, the grid resolution must be smaller than the smallest existing length scale in the flow." In 
natural convection, however, the flow is driven by buoyant forces rather than inertial forces, resulting 
in slow-moving, low-Re flow, relaxing some of the grid-spacing restrictions required for high-Re 
flows. Second, several experiments, including that of Giel and Schmidt: have concluded that the 
influence of three-dimensionality is minimal if the cavity is sufficiently deep. Thus the two- 
dimensional study conducted here should give a physically plausible representation of turbulence in 
buoyancy-driven flows. 

In a rectangular cavity, when the Rayleigh number is in the turbulent regime, the boundary layers 
on the active walls are highly compact, analogous to an isolated heated vertical plate. Therefore, in 
order to accurately simulate this flow, the conductive sublayer must be adequately resolved. George 
and Capp" show that for an isolated heated vertical plate the thickness of the conductive sublayer, A, 
can be approximated by 

). % 1.7(Pr (1 1) 

where Ram is the Rayleigh number based on ATm = Tp - T ,  and Tp is the temperature of the plate. 
For an enclosure, as is the case here, T, is approximated by To, making Ram = Ra/2. Cheesewright" 
offers another estimation for the conductive sublayer, 

llsing Pr = 0.71 and Ra = lo9, the thickness of the conductive sublayer is approximately 
2.40 x lo-) < 1. < 4.65 x In the present work, regardless of which approximation we choose, 
the conductive sublayer is well-resolved with five or six grid points. 

As a guideline to ensure the resolution of the smallest flow structures in turbulent natural 
convection, i.e. the Kolmogorov length and time scales, Paolucci' proposed the spatial and temporal 
spacing requirements 

( 1  3 4  A < n( 1 6Pr/Ra)3/8, 

At < 8n(Ra3Pr)-'/4, (1 3b) 

where the mean grid size is defined as A = (AxAy)'I2. Quantifying these results for Pr = 0.71 and 
Ra = lo9, one obtains AG3.29 x 

Throughout this simulation a 121 x 241 grid is used; Chebychev (cosine) streching is implemented 
in the vertical and horizontal directions in order to resolve the steep gradients in the vicinity of the 
walls, satisfying the above requirements. The mean grid size is in the range 
1.71 x the minimum occurring in the comers of the cavity and the 
maximum at the centre of the cavity. Thus, except near the centre of the cavity, the smallest scales 
should be well-resolved. 

and At < 4.86 x 

< A < 1.85 x 
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The time step At = 1.25 x lo-’ used in the present simulation is well within the guidelines 
prescribed by (13). Commencing From quiescence, over 3.2 x lo5 time steps are computed 
throughout the simulation, reaching a total non-dimensional time of t = 4 x which roughly 
corresponds to 40 revolution of a particle moving around the cavity with the maximum velocity 
obtained in the calculations. The mean flow was calculated by sampling the entire flow field over 
2.4 x lo4 samples for 3.21 x 10-2<t<4.0 x 

3. RESULTS 

In this section, results of the simulation are presented and comparisons are made with previous 
numerical and experimental investigations. Some of the experimental studies involve isolated heated 
vertical plates immersed in isothermal or stably stratified fluids. As discussed earlier, such results are 
useful in analysing the flow inside the boundary layers of the cavity, because these boundary layers 
are highly compact for Ra as large as 10’. 

3. I .  Transient to statistically steady Pow 

Plate 1 displays isotherms and velocity vectors at several instances in the simulation. As apparent 
in Plate I(a), heat is initially conducted From the active side walls, resulting in heated and cooled wall 
layers which grow in time. The boundary layer is unstable and infinitesimal disturbances near the 
bottom of the hot wall and the top of the cold wall grow in amplitude (Plates l(a) and l(b)). Wave- 
like structures form and begin to fold back in ‘hook’-like patterns (Plate I(b)). These ‘hook’-like 
patterns have also been observed by others4’* and form owing to the penetration of the waves into the 
core of the cavity, resulting in a deceleration of the fluid, particularly at the tips. This slowing causes 
the crest of the waves to fold back, developing the distinctive ‘hook’-like patterns. The ‘hook’-like 
structures evolve into two large symmetrical vortices on opposite comers, downstream of the active 
walls (Plate 1 (c)). The distinctive vortical structures seem to be a characteristic of the early transient 
state.R As the flow penetrates further into the core, the symmetry observed earlier is broken (Plate 

Towards the end of the transient state (Plate I(e)) and well within the statistically steady state 
(Plate l(f))  the behaviour of the flow is consistent with Elder’s experimental ob~ervations.~ Boundary 
layer structures similar to the ‘hook’ patterns observed early in the transient state are again apparent. 
These structures are indicative of a mixing region between the wall layers and the interior. As small 
vortical structures are convected downstream along the active walls, the fluid is entrained from the 
core and ejected. Between these intense mixing regions a relatively quiescent, stably stratified fluid is 
observed. 

I(d)). 

3.2. Mean pow 

The mean flow shown in Figure 2 is computed by ensemble averaging the time-averaged data once 
the diagonal of the cavity. No qualitative change was observed as a result of this process, as it is only 
served to double the statistical base of the time averaging. 

The stream function contours obtained from this averaging process reveal two distance cells along 
the downstream side of the active walls. The development of these cells is due to the large Ra of the 
present simulation. At very low Ra a unicellular flow is established, and as Ra is increased, the 
development of the thermal boundary layers steepens the horizontal thermal gradients in the vicinity 
of the active walls, convecting the fluid downstream. Since this occurs on both active wall sin 
opposite directions, a region of low vorticity develops in the core of the cavity, leading to two distinct 
cells. For Ra in the turbulent regime these vortical structures are highly developed. 
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Figure 2. Streamfunction ij, velocity vectors and isotherms of mean flow 

From the mean isotherms, severe isotherm compaction along the active walls can be observed 
consistent with high-Ra flows2' A significant amount of convection is seen to develop near the mid- 
height of the cavity and the strength of this convection directly determines the strength of the 
circulation cells revealed in the streamfunction contours. Between these circulation cells the 
isotherms are characterized by a stably stratified conductive profile in the vertical direction. 

In Figure 3 the stratification of the thermal field is nearly linear and the slope is calculated as 

in the lower and upper portions of the cavity. This is consistent with Elder: who obtained a slope of 
0.3W.4 in the lower portions of the cavity, and PaolucciR and Rutateladze et aZ.,s who obtained 
similar results across the entire height of the cavity. The slope in the current calculations across the 
entire height of the cavity is approximated by fl  zz 0.6. The steeper slope near the mid-height of the 
cavity may be caused by a relatively low Ra of the present calculations. Cowan et aL6 obtained 
p = 0.54 when correlating data for water at various aspect ratios with 1.5 x lo7 < Ra < 2.3 x lo", 
with the lower-Ra calculations corresponding to slightly higher values of 0. 

3.3. Boundary layer projiles 

Profiles of the mean flow at the mid-height of the cavity are studied in this subsection. Since it is 
the farthest away from the end walls, this particular y-location is chosen in order to obtain a more 
direct comparison with experimental results of an isolated vertical flat plate, as well as convection 
flows in enclosures. 
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Figure 3 .  Mean tempeature along mid-width of cavity (x = 0.5): - - , present simulation; ---, straight line of 

George and Capp18 developed a theory for natural convection turbulent boundary layers of heated 
vertical surfaces. Using classical scaling theory, they showed that the turbulent boundary layer, when 
!illy developed, must be treated in two parts. One is the outer region, consisting of most of the 
boundary layer, in which viscous and conduction terms are negligible, and the other is the inner 
region, characterized by a constant heat flux, in which mean convection is negligible. A schematic 
diagram of these regions is shown in Figure 4. 

The inner region consists of two sublayers. Directly next to the wall are the conductive and viscous 
sublayers, in which both temperature and velocity are linear. The outer part of the inner region is 
called the buoyant sublayer, where v a x1l3 while 8 cx x-  The outer region, which contains most 

Outer 
Region 

UI 

Core 
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I : Conductive & Viscous Sublayers 
I1 : Buoyant Sublayer 
El : Outer @Axing) Region 
IV : Interior/Core Region 

Figure 4. Sketch of major regions of boundary layn (adapted from Reference 18) 
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Plate I .  Isotherms and velocity vectors at various times in the simulation: (a) t=2.SOxlW4, (b) r=5.00~10-~, (c) f=7.50~10-~. 
(d) f=5,12~10-~, (e )  r=l~01x10-* and (f) r==34)1x10 * 
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of the convection in the flow, is found to be self-similar. This is the region Elder4 refers to as the 
mixing region in the cavity. These regions developed by George and CappI8 for heated vertical 
surfaces are also applicable in the current simulation of an enclosed cavity demonstrating that the 
turbulent boundary layers are fully developed. 

The mean temperature and velocity profiles at the mid-height of the cavity near the hot wall are 
plotted in Figure 5 .  The extremely thin thermal boundary layer is clearly evident in Figure (5a). The 
steep horizontal gradients of both temperature and vertical velocity clearly justify the requirement for 
the finely stretched grid implemented in the present calculation. The thermal boundary layer extends 
to x zz 0.035, while the vertical velocity boundary layer extends much further. The convective profile 
of the vertical velocity depicts the amount of heat transfer in the vertical direction. 

Further mean velocity and temperature profiles are shown in Figure 6 for the lower half of the 
cavity, near the hot wall. From the temperature profiles one can see the stably stratified core near the 
wall region. The vertical velocity profiles indicate that the maximum velocity is reached before the 
mid-height of the cavity. 

-0.101 I 
0.00 0.05 0.70 0.15 

X 

0.00 0.05 0.10 0.15 

X 

Figure 5. (a) Temperature and (b) vertical velocity profiles at mid-height of cavity (Y = 2) 
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Figure 6. (a) Temperature and (b) vertical velocity profiles at various y-locations near hot wall 

To better analyse the inner region of the boundary layer, George and Capp" suggest the scaling 
parameter 

P~AT,, ,L;  -'I3 

= (-7) = (z  R c ~ P ~ ) - ' ' ~  for an enclosed cavity. 

To compare results of this investigation with those of George and Capp'& and Paolucci,8 the 
following scales are used for the mean temperature, 8, and mean vertical velocity, 2;, distributions at 
the mid-height of the cavity: 

4 = 2% v7 = qv. (16) 

As explained earlier, the conductive sublayer, shown in Figure 7, is characterized by a linear 
temperature profile. Using the notation of Paolucci,' temperature is expressed as 

4 = 1 - k , ( i )  
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1 0  15 20 25 30 0 5 

X J  r7 
Figure 7 .  Mean temperature profile in conductive sublayer at mid-height of cavity (y = 2): ~ , present simulation; 

, straight line of slope -k ,  

in the range 0 < x < A, with k ,  = 0.14 and A = 4.35 x The thickness of the conductive 
sublayer is in excellent agreement with that predicted by Cheesewright,'' i = 4.65 x In Table 
111 the slope k , ,  as well as other constants k2k5 defined later, is compared with the results of Paolucci' 
and George and Capp," showing good agreement. 

The conductive sublayer encompasses the viscous sublayer, for which George and Capp" obtained 
an analytical expression for velocity. In terms of variables consistent with the above definitions, this 
expression can be written as 

where kf  is a constant representing the friction coefficient, for which a value of 3.60 is obtained in 
this study. This compared well with the value obtained by Paolucci,' 3.89, differing by only 8%. 
Using k ,  = 3.60, this expression yields a perfect fit for the calculated velocity in the sublayer, 
confirming its applicability to buoyancy-driven cavity flows. 

In Figure 8 and 9 the behaviour of the mean temperature and velocity in the buoyant sublayer is 
presented. In Figure 8 a linear profile of temperature for 8.4 x is found when 
plotted against ( x / ~ ) - " ~ .  This profile can be characterized by 

< x < 2.5 x 

with k, = 1.94 and k3 = 0.97 and in good agreement with the Pr dependence obtained by Paolucci,* 

which yields 2.22 for air. The large difference in k3 compared with that of George and Capp" (Table 
111) may be attributed to the absence of a stably stratified fluid in their experimental configuration of 
the heated vertical plate. 
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( x  I q ) - f ' 3  

Figure 8. Mean temperature profile in buoyant sublayer at mid-height of cavity (v = 2): - , present simulation; 
, straight line of slope k2 and &intercept k, 

20 I " 1  
I / '  

0.0 0.5 1 .0 1.5 2.0 2.5 

( x  I q)"3 

Figure 9. Mean vertical velocity profile in buoyant sublayer at mid-height of cavity 
_ _ _  , straight line of slope k4 and V,-intercept k, 

= 2): --, present simulation 

Table 111. Comparison of various constants found in boundary layer calculations in Section 3.3 

kl k2 k3 k.4 k5 Description 

Enclosed cavity: 
Current work 0.14 1.94 0.97 12-03 7.70 Pr = 0.71.A = 4 

Pr = 0.7l.A = 1 Paolucci' 0.12 2.4 1 0.94 13.63 8.77 
Vertical plate 

George and Cappl' 0.1 1.45 0.35 12.3 9.3 Pr = 0.71 



BUOYANCY-DRIVEN TURBULENCE IN A RECTANGULAR CAVITY 1323 

The linear profile of vertical velocity in the buoyant sublayer is presented in Figure 9, plotted 
against ( x / q ) I i 3 .  Consistent with other ~tudies,~." this relation is valid for a much smaller portion of 
the sublayer, 1.5 x < x < 7.10-3, relative to that of temperature. The profile of the scaled 
vertical velocity in this region may be written as 

with k4 = 12.03 and k, = 7.70. Once again, these results are consistent with those of other studies. 
The velocity in the outer regions of the boundary layer is found to be self-similar for an isolated 

heated vertical surface. By plotting V /  V ,  versus x/dv, the vertical velocity collapses to a single profile 
for fully developed turbulence. Here V, is the maximum vertical velocity in x and 6, is the boundary 
layer thickness defined by 

- dx for an enclosed cavity. 

In Figure 10, using the similarity variables described above, with V, = 1.145 x lo4 and 
6 ,  = 0.0567, the present mean vertical velocity profile is compared with that of Paolucci' for 
Ra = 10" and A = 1. Although the profiles are quite similar, the collapse to a single profile is not 
observed. The variance in the profiles may be attributed to the difference in Rayleigh numbers being 
considered for the two different geometries. 

Thus the scaling introduced by George and Capp" for isolated heated vertical surfaces in the 
turbulent regime is also valid for enclosed cavities. As long as a stably stratified fluid is considered 
outside the boundary layer of the vertical surface, the boundary layers in each geometry exhibit the 
same characteristics. 

0 2 4 

x 16, 

Figure 10. Normalized vettical velocity profile in outer region: ~ , present simulation; 0, Reference 8 
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3.4. Correlations and RMSJuctuations 

One-point correlations are computed at every grid location in the cavity for 
over 1.2 x lo4 samples. These results help to quantify the intensity 3.25 x < t < 4.0 x 

of the turbulence present in the cavity. 
Profiles near the hot wall are shown in Figure 11 &the mid-height of the cavity. 
The general behaviour of all three quantities, (0 ‘2 ) (U’Z)”’ and (z)”’, is consistent with 

experimental results of Kutateladze et al.’ and Giel and Schmidt,’ as well as with numerical results of 
Paolucci.8 the maxima for temperature and vertical velocity fluctuations occur near the location of the 
maximum velocity, x, = 0.017. The maximum amplitudes reach 0.40 and 0.3 for vertical velocity 
and temperature fluctuations respectively. These agree remarkably well with the values of 0.40 and 
0.14 obtained by Kutateladze ef  a1.’ The maximum RMS fluctuations of vertical velocity computed 
by Paolucci8 are approximately half of those observed in the experimental studies. He attributes the 
difference to the Pr dependence of the viscous and conductive sublayer thicknesses. The computed 
values of the present simulation using the same Pr (0.71) seem to challenge this conclusion. 

is observed near x = 0. - 6 .  This local maximum is near the 
location of maximum horizontal velocity. The occurrence of this second hump is in strong agreement 
with both experimental results and numerical results of Paolucci.* It reflects the continued mixing 
taking place in the boundary layer and should be considered when developing turbulence models for 
this type of problem. 

Another local maximum of 

3.5. Time dependence 

Spectral analysis is used in turbulence investigations as a tool to analyse instantaneous flow 
characteristics. If only a few distinct frequencies are apparent in the frequency spectra, the flow may 
be termed somewhat chaotic but not yet turbulent. As the driving force is increased, more and more 
fiequencies become energized. The flow is turbulent when the spectra are marked by broadband 
components of frequency. 

Figure 12 shows a brief time history of the temperature at a fixed point at the mid-height of the 
cavity in the vicinity of the hot wall. The frequency content of this particular time sample is shown in 

0.00 0.05 0 . l C  0.15 

X 

-. 

Figure 11. RMS quantities in vicinity of k t  wall at mid-hei ht of cavity (y= 2): ----, (0‘Z)’l’; -- ’, 
(vR)’I2/Vm; -.-,(Id 2 ) 1% /v, 



BUOYANCY-DRIVEN TURBULENCE IN A RECTANGULAR CAVITY 1325 

0.0 

-0.21 I 
0.0300 0.0325 0.0350 

t 

Figure 12. Brief time history of temperature at (x ,y )  = (0.1,2.0) 

I lo-'- ' 

4 
0 3 . 5 0 ~  10 

f 
Figure 13. Frequency spectra of time sample shown in Figure 13 

Figure 13. The frequency spectrum has broadband character indicative of fully developed turbulent 
flow. The frequency range shows good agreement with the results of Paolucci and Chenoweth" and 
Giel and Schmidt.' 

4. CONCLUSIONS 

A numerical simulation of two-dimensional turbulent natural convection has been conducted. Starting 
from quiescent, isothermal conditions, transient effects are observed using the time-dependent 
Navier-Stokes equations. Unstable boundary layers are quickly established along the active walls. 
Infinitesimal disturbances near the entry comers soon grow in amplitude, resulting in distinctive 
'hook'-like patterns along the active walls as seen in experimental results. As a statistically steady 
solution is reached, strong mixing regions are observed between the wall layers and the relatively 
quiescent, stably stratified core. 
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The Boussinesq approximation is shown to be valid in buoyancy-driven turbulent flow, enabling 
the simulation of the full transitional and turbulent flow starting from quiescent initial conditions. 
Mean and first-order turbulence quantities show excellent agreement with both experimental and 
numerical results not implementing this assumption; the broadband frequency spectra are also 
indicative of fully developed turbulent flow. ‘The precise effect of machine round-off and truncation 
errors, inherently contained in all numerical solutions, is difficult to ascertain and was not attempted 
in this work. 

Time- and ensemble-averaged mean flow reveals two distinct vortex structures along the 
downstream side of the active walls due to the large Ra of the calculation. From isotherms, strong 
convection is seen to develop near the mid-height of the cavity and severe isotherm compaction is 
observed near the active walls. The isotherm compaction allows comparisons to be made with 
turbulent boundary layer theory along isolated vertical heated surfaces, developed by George and 
Capp.” This theory is also found to be valid for enclosed cavities. The outer region, which contains 
most of the convection in the flow, is found to be nearly self-similar when compared with the results 
of Paolucci.’ RMS fluctuations and frequency spectra indicate fdly developed turbulent flow, where 
fluctuations are found to be more pronounced along the active walls. 
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